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ABSTRACT

Z”"The ability to predict torsional instability in the
early stages of design can have important consequences
on the design of both conventional and high performance
ships. This thesis develops fast approximate methods of
torsional buckling analysis for particular application
in the concept, feasibility, and preliminary stages of
ship design.

Two simplified models of stiffeners commonly used in
ship construction were presented. The first was an
ideal I section stiffener. The second, a flat bar
stiffener, which was included in this analysis because
of o its favorable productional properties and wide
useage. These models, with initial imperfections, were
subjected to axial compressive end locading and the
resultant behavior analyzed. The approach of the
analygsis of this thesis was an application of the
energy method to determine the critical buckling stress
instead of the more commonly used equilibrium approach.
Both beam theory and thin plate theory were used in
energy-work relationships in these derivations. Then
the first yield load was determined utilizing the
Perry-Robertson approach. Integrated into all phases of
this exploration was the concept of the geometric
imperfections of the stiffeners. S
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NOMENCLATURE

A Nondimensional parameter

a Length of stiffener between transverse supports
b Uniform stiffener spacing

b Plating effective width

Angle of rotation of the stiffener about the toe

Initial imperfection of the stiffener in terms of a
rotation angle about the toe

Amplitude of the sinusocidal function for B

»
Amplitude of the sinusoidal function for B

Rotational spring constant (moment/length) of the
supporting plating

Longitudinal warping constant of stiffener

Flexural rigidity of plating
Flexural rigidity of web plating of stiffener

Depth of flat bar stiffener; overall depth of Tee
stiffener

Depth of stiffener to midthickness of flange

Depth of web

Young’s Modulus of the material
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M(x)

m
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Membrane strain

Width of stiffener flange

Shear Modulus of the material

Height of neutral axis of plate-stiffener
combination from midplane of plating

Effective vertical moment of inertia of stiffener
and associated effective width of plating

Polar moment of inertia of stiffener about toe

Vertical moment of inertia of stiffener alone about

toe

Moment of inertia of stiffener about web plane

St. Venant's torsion constan’ for stiffener
Reduced slenderness ratio

Momant developed in the stiffener by the total
torque

Mode number
Axial end load
Height of stiffener shear center above toe
Elastic axial torsional buckling stress in

stiffener (critical stress)

Elastic axial torsional buckling stress limit of

stiffener (classical stress)

Axial stress in stiffenar
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Axial stress component
x
% ) Maximum compressive stress developed by
x MAXT
the torque
4 Tensile yield stress of material
y
T Amplitude of the sinsocidal torque function
-]
T Total torque developed in the stiffener structure
by the loading
T St. Venant's torque developed in the stiffener
sv
T Warping torque developed in the stiffener
w
t Plate thicknaess -
t Stiffener flange thickness
f
t Stiffener web thickness
w
u Displacement in the longitudinal (x) direction
v Total strain energy of the structure
v Sideways flexure (y) of stiffener
»
v Initial imperfaction of stiffener in horizontal (y)
direction
W Total work of the applied force
w Vartical flexure (2) of stiffener

el
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*

w Initial imperfection of the stiffener in the
vertical (z) direction

2 Height of stiffener centroid above toe

Y Poisson’s Ratio

Nota: x,y or 2z subscripts indicate partial derivatives

with respect to those coordinates . These are used
* * *

particularly with v, v, w, w, B, B .
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INTRODUCTION

The subject of ¢this ¢thesis is to develop a
simplified analytical method of predicting torsional
buckling of stiffeners used in ship structures.
Torsional buckling or instability is the phencmena by
which a column, at a certain axial load, fails suddenly
in a combined mode of twist and lateral bending of the
cross section (reference 7). Figure (0-1a) (from
raeference 6) illustrates the failure mode referred to |
here as torsional buckling - in this case for a flat
bar stiffener. Figure (2-1b) illustrates the failure
node of the tripping phenomenon which is not covered in
this analysis. Figure (9-2) (reference 6) is the
experimental load deflection curve for the failure of a
flat bar stiffener under an axial load. Point A of the
solid (experimental) curve of figure (B-2) is the
ultimate strength load. As can be seen from figure (0-
2), the curve proceads in a downward fashion - the bar
looses stiffrness and fails from this point.

The ability to predict torsional instability
in the early stages of design can have important
consequences on the design of both conventional and
high performance ships. It is the intention of this

thesis to develop fast approximate methods of torsional

11
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Figure (@-1a) Torsional Buckling

el

Figure (2-1b) Tripping

~ 8

Figure (@-1) Characterization of Torsional Buckling
and Tripping in a Flat Bar Stiffener
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buckling analysis for particular application in the
concept, feasibility, and preliminary stages of ship
design.

To this end, two simplified models of stiffeners
commonly used in ship construction will be presented.
The first is an ideal I section stiffener. The second,
a flat bar stiffener, which is included in this
analysis because of its favorable productional
properties and wide useage. These models, with initial
imperfections, will be subjected to axial compressive
end loading and the resultant behavior analyzed. The
approach of ¢the analysis of this thesis will be an
application of energy methods to determine the critical
buckling stress instead of the more commonly used
equilibrium approach. Both beam theory and thin plate
theory are used in energy-work relationships in these
derivations. Then the first yield load is determined
utilizing the Perry-Robertson approach as described in
references (9,14), Integrated into all phases of this
exploration will be the concept of the geometric
imperfections of the stiffeners.

It is the intention of this thesis, using the above
mentioned approach, to lay groundwork which would have
the potential for future expansion to include mode

interaction -~ to be able to easily analyze combined

14




loadings etc..

Particular emphasis is placed here upon inclusion
of the geometrical initial deformities of the
atiffeners which occur during the manufacture and
through day to day usage of the ship. It is well known
that these geometric imperfections can drastically
reduce the strength of the structural member. But
current design standards (references 10,11 etc) have
not tried to quantify these values. Some design codes
(example: reference 10) have specified tolerence limits
of various geometric parameters which must be met
before the design formulae are considered valid.
Granted, in the concept, feasibility and preliminary
stages of ship design where the ship only exists on
paper, the designer would have no knowledge of the end
resulting imperfections of the actual ship. Hopefully,
in the future, with the advent of better production
control in shipyards and the incursion of the computer
into ship production facilities, this information will
be collected and statistically analyzed.

In addition, once the ship is manufactured, these
formulae will provide a quick and easy evaluation of
the actual critical buckling stress in terms of
physical parameters. Thus, this analysis has made a

special effort to define the imperfections in easily

15
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measured terms. This analysis measures the horizontal
or vertical movement of ¢the shear center of the
stiffener at its point of greatest deflection and
assumes a simple sinusoidal distribution. Knowledge of
the web depth easily converts the imperfection into a
rotational angle. Here, the stifferer is considered to
rotate about its toe or base. In other words, the base
plating is considered much larger and stiffer. Figure

(0-3} illustrates this simplified concept for a Tee

stiffener.
Z
|€ v 3,1(v' -'/"’\
L_/'/v 1
/ > "‘(‘
w
. x - -
) B'
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\\\\\\\ )
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Y Y

Figure (9-3) Tee Stiffener

Currently the method of handling the stiffener
failure problem is incorporated into the use of factors
of safety. But, with recent attempts to further

optimize ship structures - in particular to minimize
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the amount of weight of a ship that must be devoted to
its structure - better, yet reliable, methods must be
devised. Remember, with a ship, 1less weight in the
structure equates to more weight for the payload be it
weapons for a military ship or cargo for a civilian
ship.

This thesis concludes with a comparison between the
formulae derived from the simplified models presented
here and published formulae, published finite element

analysis, and experimentally derived results.
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1. DESCRIPTION OF MODELS

Torsional buckling or instability is characterized
by a twisting of the stiffener about its line of
attachment to the plating. This deformation pattern
involves both sideways and vertical flexure (vyw) and
rotation (B) of the stiffener as shown in figure (1) as

described in reference (3).

zZ/

Wi /

r

Y < L

Figure (1-1a) Coordinate System

Z
b4 N £
A 'é"_'ﬁ"q\
/b\‘-—_-l
f ) | —
A 5
w
. \x —
B
N \
N B
Y & Yy &
Figure (1-1b) Undeformed Figure (i1-1c) Deformed

Figure (1-1) Characterization of Torsional Buckling
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The first model considered is a simplification of
an ideal I-section. It consists of an I-beam with zero
torsional rigidity. The web of the I-beam transmits
only shear forces. In effect, it looks like twc uriequal

flanges:

Wil L Ll I 20}

LLLLLL L

I-beam Stress Distribution

Figure (1-2) Model 1

This model has been considered in reference (4).
However. reference (4) used an equilibrium approach and
initial imperfections were censidered as an
eccentricity of the axial load. The resulting equations
of the critical stress were quite complicated.

Figure (1-3) illustrates the geometric parameters

of this model.

19




7’\
i.‘

T — /i\ ] /‘ \

dc

\
Ly
y )

Figure (1-3) - Geometric Torsional Buckling

Darameters for Mcdel

I - Moment of inertia about the web plane (top flange

z
only)

3
I = (¢t f )/12
2 fw

s - Height of shear center above toe (origin) (top
flange only)

s = d
c

c - Longitudinal warping constant about shear center
w

of stiffener alone (top flange only)

C =20
"

1 - Vertical moment of inertia about toe (top flange

t
only)
e 2
I =f¢ (d + (1/712)¢ )
t wf ¢ f
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1 - Polar moment of irertia about toe

2 -~ Height of centroid above toe

2=d
c

J = St. Venant’s torsion constant (top flange only)

3
J = (f ¢t )3
w f
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1.2 Mode]l 1I.

The second model considered is the simple flat bar

stiffener illustrated in figure (1-4).

4

Figure (1-4) Model 1I - Flat bar stiffener.

Figure (1-5) illustrates the geometric parameters

of this model.
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Figure (1-5) - Geometric Torsional Buckling
Parameters for Model 11

I - Moment of inertia about the web plane

2
(web only)
3
I = (d t )/12
2 ww

s - Height of shear center above foe (origin)
(web only)

s =d /2
w

€C - Longitudinal warping constant about shear

w
center of stiffener alone

C =20
w

I - Vertical moment of inertia about toe (web only)
t 3
1 = (¢t d)/3
t W W

I - Polar moment of inertia about toe

a3

1
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S P S PP Sy S WP



z - Height of centroid above toe

z =d /2
w

J - St. Venant's torsion constant ]
3 )
J = (d t )/3

ww

D - Flexural rigidity of the web plate
w -
3
Et
w

w e
12(1- Yy )
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2. MODEL I - TORSIONAL BUCKLING UNDER AXIAL LOADS

Since Model I basically consists of two unequal
flanges with the top flange rotating about the bottom
flange, the torsional rigidity is considered only for
the top flange. Thus the strain energy eguation
consists of three parts (reference 1). The first term
represents sideways bending. The second term represents
longitudinal warping. The third term represents the
torsional rigidity of the top flange alone. The strain

energy for a length a is:

a e 2 2
V= y/2 jﬁ (ET v + EC B + BJB )dx
Q Z XX w XX x

Also from geometrical propaerties we have (see figure
1-3) s

v & gB
Thus:

a 22 2 e
V= 1/2 j’ (EI s B + EC B + BJB ) dx
" F 34 W XX X

a 2 2 2
vV =1/2 IE(IS + C)B + GJB 1 dx
" z w XX X

as

——



3. Mama

,T_._f._
4

The following choice of B is made, in order to

meet certain boundary conditions (ie B = Q
XXM
x=a ) and to keep B simple.
B=B sin (m/™x/a)
)
Thus for Model I:
2 2 2
V=1/4aB (mfr/a) L E(Is +C ) (m 7T/a)
] z w
26

at

2

x=0,

+ GJ 1




2.2 gign Convention

Before development of the virtual work equation, a
note should be said about the sign convention used
here. Compression is held to be a positive stress and
tension as negative. The following figures illustrate

the sign convention used here.

S e

*Txz <

T

Figure (2-1) Sign convention for inplane axial and
shear stress components.
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Figure (2-2) Application of sign convention
case of an axial load.
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2.3 Development of Virtual Work Eguation.

Model I is not assumed to be perfect but rather to

* * *

F. ) have initial imperfections. These initial imperfections
v w and B and the additional deformations v,w and B

are illustrated in figure (2-3).

N Eaons
N

v= v-ﬁ\
N fﬁ)\

- | ] —
L‘ Py _*
. é& w
r . —
. B'
N \
N B
Y &
Figure (2-3) Il1lustration of initial imperfections
v#,w#,B* and additional deformations Vv, Wy Ba
The virtual work for the case of an inplane axial
f locad becomas (reference 1)1
. W= fft uly,2) dy dz
' A x
Thus using figure (1-1), it can be shown that the
ik strain of the centroidal axis in the bent
' configuration, ¥ (membrane strain), is (reference 1)1
x
2 2
@ = -y + 1/2(v) + 1/2(w)
L= X X X x
29




for a parfect 1 section. With imperfections,

substitute:
»

v+e+yv foryv

»
we*w forw

Thus:
* 2 * 2
& = -y + 1/72¢(v +v ) + 1/2(w *w )
X X X X X X

using the inextensibility assumptions, sat:

& =0
X
we have:
* 2 * 2
u = 1/2¢v +v )} + 1/2(w +w )
" X X X X

a * 2 ® 2
us= {/2 j’ Cdv v ) + (w +w ) ] dx
Q X X R X

whare u = uly,2).

From geometrical relationships (see figure (2-3))

v % 2B w = -yB

» * » »
v = 2B w 2 -yB

(2-1)

v & 2B w % -yB

X X X X

» #* » »
v % 2B w % -yB

X x X X

Substituting and integrating we get:

30
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a 22 2 * e #*2
uly,z) = 1/2{ (zB + 22 BB +2z B
| % X X X

e e 2 *2 2 »2
+ yB +2y B B +y B ) dx
x X X x

2 2 * 2

a
uly,z) = 1/2 [ (z +y (B +B) dx
o x X

*
Again using the simple choice for B and B :

B =B sinim?”x/a)
o

» ®
B = B sin(m7" x/a)
(Y

Thus:
a 2 2
uly,z) = 1/2 I (z +y )L(mr/a)B cosimrx/a)
"] o

» e
+ (mT/a)B cos{mrrx/a)l] dx
o

2 2 * 2

a
uly,2) = 1/2 f (z +y )} (B +B )
o o ©

e
# L(m7/a)cos(mx/a)] dx

2 2 * 2 2
ul(y,z) = 1/2(z +y )(B +B ) (m7/a)
o o

# [x/2 + (sin(2m7"x/a)/(4mT/a) ]

31
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Y

v=r

e

T‘“v.'m-,,vv‘v v v e
‘ o . Y M o
. . .

.

Il

2

2

o

* 2
uly,2z) = 1/4(z +y (B +B )
o

The work equation now becomes:

- J

f ¥ [1/4(z +y ) (B
A x

e 2

(=]

*

(m7/a)

2

2
a

2

+B ) (m77/a) al dy dz

(=]

For the current situation of end loading, & = §&

W= [1/4(B +B ) (m 7 /a)

But note that:

Thus:

2 2
(z +y)dydz= 1
A

o

* 2

o

* 2

2

P

W=1/4% (B +B) (mT~/a) a1

o

32
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2.4 Determination of the Critical Buckling Stress.

Applying the calculus of variations with respect

to B to the work and strain energy equations yields
o
(reference 3)1

»2 2
Su=1/28 (B+B) (m?/a) al §B
@ o o p o

2 2 2
Sv=1/2aB (mTr7a) [ECI s + C )(mit/a)
[] 2 w

+ BJ]SB
o

Applying the principle of minimum potential energy:
T a Sv-Su=20

we get:
Su=dv

Solving for & 3
e

2 2
(ECI s +C )miza) + GJ1 B
2 w o

(2-2)
1t can be seen by inspaction that the Ilowest
buckling stress occurs for one wave, M = 1, since m

must be an integer. Thus:

33
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g =8
e CR
As it can easily be seen, as B becomes large &
o CR
approaches the limit of:
2 2
(E(I1 8 +C)m/r/a) + GJI
2 w
| = (2-3)
CcL
) ¢
P
Figure (2-4) illustrates the behavior of & with
* CR
increasing B + B .
o °

Further simplification and rearranging of equations

(2-2) and (2-3) provides:

¥ B + % B =% B
CR o CR o CR o

B = (2~-4)

34
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2.5 Determination of the First Yield Load

To determine the first yield load, the total torque
developed in the torsional buckling process must be
first evaluated. This torque will consist of two parts.
The first term consists of the well known St. Venant’s
Torque (reference 1). The second term represents the
warping torque (reference 2).

From reference (1):

T=T + T

sv W

where:

T = GJB
sV X

and from reference (2)1@

T = ~EI d w
W Z € XXX

and from geometry;
w =dB
® c x
resulting in:
2
T =-EIdB

W 2 C RNX

Thus the total torque is:

—d




2
T=6JB ~EI dB (2-3)
X Z C XXX

Figure (2-3) illustrates the above equations.

Again a simple choice of B is made, and with m = 1:

B =B sin(Tx/a) (2-6)
=)

Equation (2-5) now becomes:

T = BJ(/™/a)B cos(/*x/a)
o

4 3
+ EI d (7/a) B cos(7rx/a)
zc o

2 2
T = (™ /a)B cos{™x/a)IBJ + E1 d (7 /a) 1]
o z e

Choosing a simple sinusoidal shape for T allows:

T = T cos(T x/a)
=]
Thus:
2 2
T = (7/a)B BT + EI d (/F/7a) ) 2-7)
(=] [ =] 2 C

To eliminate B, equation (2-4) is applied to equation

o
t2-7).
»
B
[~}
2 2
T =(BJ + EI d (77/a) 1(7 /a)
(-] 2 C
(% /% = 1)
CL CR
(2-8)
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From sectional considerations, an evaluation of the N -]

maximum stress carn be made.
2% '
1 - el

H | J=—

\

Figure _(2-5) Sectional illustration.

The moment developed by the torque in terws of
deflections is (reference 2):

M(x) = - EI w.
Z XX

So the maximum compressive stress developed in the

flange due to the torque is:

-EI dB f
ZC XX W
(% ) =
x MAXT
21
2z
(x ) = -EdB f /2
% MAXT C XX W ;;

Application of the above definition for B (equation

2-4) leaves:
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3

Ed f
cw 2 -
(8 ) B em——————— (/7 /a) B sin(77 x/a)
x MAXT o
2
A choice of x is made such that (% ) is a maximum: A
x MAXT
Ed f
cw 2
(%) B ——eeeeeee— (7/a) B (2~9)
x MAXT o
2

Equations (2-7) and (2-9) are combined to eliminate B .
o .

Ed f T (T/sa)
C W o
(5 ) = (2-10)
x MAXT 2 2
2C6Y +EI1 d (7'/a) 1
2 C

Using equation (2-8) leads to:

e *
Ed £ (J7/a) B
ow o
(8 ) = (2-11)
% MAXT
2 [y /% - 13
cL CR
»
Note that when B = @ that this equation leads to an
o
indeterminate form of & since ¥ =g
X cL CR

The total maximum stress can now be described by:

(% ) = (% ) + P/A
x TOTAL x MAXT

where
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P/A = &
CR

Thus the yield stress has been shown to be:

& = (§) + % (2-12)
y x MAXT  CR

Using equation (2-11) in equation (2-12):

e *
Ed £ (7 /a) B
cw
& = + 8
b4 CR
2 % /% -1
CL CR
(2-13)
2
Solving for & and dividing by & to place into
CR y
nondimensional form yields:
2 2 #
g . % Ed f (T"/a) B 8 (
CR CL cw o CR cL
—— - 1 + + = @
8 -4 28 -4 -4
Yy y Yy y y
(2-14)

Choosing the smallest root and simplifying the equation

by introducing a slenderness ratio L:

(2~-13)
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and letting:

2 *
(7 /a) Ed £ B
C W o
A= (2-16)
2t
y

Then 2
2 2 2 2
g (1 + 1/L + A) - {1 + 1/L + A) - &4/L

5 2
(2-17)

A plot of 8 /% vs L for various values of A is
shown in figurecﬁe-z). Figure (2-6) was compared with
various design criteria from reference (19) and it was
found ¢that equation (2-17) was similar to design
equations of reference (10). However, the reduced
slenderness ratio, L, of reference (10) is based upon
simple Euler buckling and the geometric parameter, AR,
is of course different. The column curves of reference

(10) were quite similar in appearance and range of

values to that found in figure (2-6).
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3. MODEL II - TORSIONAL BUCKLING UNDER AXIAL LOADS -

3.1 Development of the Strain Energy Eguation.
Since Model 1II is the very simple case of a flat -
bar stiffener, thin plate theory can be easily utilized
in the development of the strain energy equation. Much
of this section has been patterned after a similar
analysis presented in reference (3).

For a web plate of uniform thickness and a length a

the strain energy is repensented by (reference S): "

a (%) e
v=31/2D C(v + v )
w”“0 “0 KX 22

. B
- 2(1-V)fv v = v 1] dx dz
XX 22 K2
a 2
+ 1/2[ CB dx
[ =]

The second tarm represents the rotation of the
supporting plate structure modeled here as an elastic
spring. D is the flexural rigidity of the web plate.
From geom:trical considerations:

v = 2B
making a simple choice for Bj

B =B sin (mTx/a)
substitut?ng into the expression for the strain energy

and integrating over a constant depth d results in:
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2

V=D ad (m7/a) B
w

e

+ CB a

o

2 2
L d (miT/7a)
o

/4
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3.2 Development of the Virtual Work Eguation,
As for Model I, Model II is not assumed to be
perfect but rather to have initial imperfections. These
* * »

initial imperfections v, w , B and the additional

deformations v, w, and B are illustrated in figure

(3-1).

e e

ot

£

Figure (3-1) Illustration of the initial imperfections
v, wit, B* and additional deformations v,w,B.

For the case of an inplane axial load, the work

equation is ¢
We % ul(y,2) dy dz
J]; ]

From figure (3-1), it can be shown that 1
2 2
@ = -=-u <+ 1/2(v) <« 1/2(w)
% X » X
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for a perfect web section. With imperfections, and
using the inextensibility assumption with regard to the

length of'the stiffener setting & = 0, the result is :
X

* 2 * 2

u =1/2(v +v) +1/72w + w)
X X X ] X

a * 2 * 2
us t/R ‘j’ v +v) + 1/2(w + w ) 1 dx
o X X ] X
(3-2)
where u = uly,2)
As shown in figure 3-1), the geometrical

relationships (equations 2-1) are used to simplify

equation (3-2):

a 2 2 *
uly,2z) = 1/2 Jr (z +y )(B+ B) dx
o

»
A simple choice is made for B and B .

B =B sin (mT*x/a)

o

» »

B =B sin (m/ix/a)

o
Thus:
2 e * 2
uly,2z) = 1/4(z + y )(B + B)(mi/a) »
o o

The work egquation now bacomes:
e 2 » 2

Ws= ff!tl/b(z +y)B <+ B)m7/a) al dy dz
A x o o
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* 2 2
W= 1/4 8 (B +B) (m7"/a) al
X O o P
3.3 Determination of the Critical Buckling Stress.

Applying the calculus of variations with respect to

B to the work and strain energy equations yields:
o

* 2 2

Sua 1/28 (B +B) (mi/a) al S B

X o o P o

2 2

SVU=¢D ad m™/a) B C d (m7/a)

W [=]
2
+ 6(1 -Y) 1/6 + CB as2 }Sa

o =

Applying the principle of minimum potential energy:

TMadv- Su=28

Sw=238v
Solving for & =& ¢
e CR
2 2 2
D dim ™/a) Cd (m7/a) + 6(1-V)1/3 + C B
w [=]
[ 4 »n
CR - 2 »
(m//a) b¢ B + B
P o o

(3-3)
For the case of zero restraint against rotationg

C = 0:
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C o~ = -~ —~—
w Yo 5 - T P >

2 2 2
DdmT/sa) td (mP/a) + 6(1~-Y)1] B
w Q

CR *

(3-4)

It is easily sean that the lowest & for this case
CR

results from the simplest of mode shapes, m=l.
when the rotational restraint is not equal to zeroj

the lowest value of & depends upon the degree of
CR

rotational restraint:

3 174
m= (as7r)(3C/D d ) (3-5)
w

With the use of equation (3-5), m may be evaluated

and rounded up or down to the nearest integer for the

correct wave shape.

It is easily seen that as B becomes large -4
o CR

approaches a limit. Thus with (% ) =8 1
CR LIMIT cL

e 2 2

D d(m ™7a) [d (mTF/a) + 6(1-V)1/3 + C
w
E -
cL 2
(m T/a) I
p
(3-6)
Figure (3-2) illustrates the behavior of & with
* €R
increasing B + B .
- o
Further simplification and rearranging of
48
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equations (3-3) and (3-8) providess

*
B
o
B = (3-7)
° .
x /8 -1
CL CR
Scr
N\
SCL ————————————
o \
Bo B +g"
o o
»
Figure (3-2) Behavior of & with B + B
CR o o

The first yield load will not be determined for
this case under this method of analysis due to the
relative complexity of equation (3-3) and due to the
fact that the Perry-Robertson method will not lend
itself to further simplification along this train of
analysis. Since a simplified formula for design
purposes is the goal of this thesis, the next chapter

will use a different tactic to solve the problem.
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4. MODEL II - GENERALIZED ANALYSIS

4.1 Method of Approagh and Strain Epergy Egquation.

The analysis thus far for the case of a flat bar
stiffener under end loading has proceeded along the
lines of thin plate theory up to the development of an
expression for the critical buckling stress.

This chapter uses beam theory to develop a simpler
formulation in a manner analagous to that performed on
Model I in chapter 2. In fact, this analysis will
merely be a generalization of the results for Model I
applied to Model II. It must be remembered here that
Model I consisted of two unequal flanges with the top
flange deforming or rotating about the bottom flange.
ARt no time in the derivation of the formula for the
critical stress of the tee stiffener is there an
assumption made about the position of the top flange
relative ¢to the bottom flange. Thus the same analysis
with mincr changes will be performed for the flat bar
stiffener. However, in the case of the flat bar
gtiffener of Modal II, there is a restraining effect
provided by the Jjuncture of the flat bar with the
plate. This in effect can be modeled as a spring with a
rotational constant C. Thus the strain energy equation

would have four terms (instead of the three terms for

]
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Model n. These terms represent (in order of
appearance) sideways bending; longitudinal warping;
torsion; and rotation of the supporting plate structure
modeled as an @lastic spring. Thus the strain energy

equation is:

2 e =4

a 2 :
V= 1/2 ‘{ [EI v + EC B + GJB + CB 1 dx
() 2 XX w XX X

Again choose:

B =B sin(mT™x/a)
o

Substituting and integrating results in:

2 2 4 2
V=1/4aB [E(Is +C)mW/a) + 6IJ(mT/a) + C 1
o 2 w

Applying the calculus of variations with respect to

B yields:
[=}
2 4
§v= 1/2aB [(E(ls +C)mi/a)
o F 4 w

¢ S
+6BIJmT/a) +C 10 8B (4-1)
Q

4.2 The Work Equation.
The assumptions used in deriving the work eqguation

for Model I are the same as for Model II1. Thus from

chapter 2 we have:
* 2 2
W= 1/4% (B +B) (m77a) al
e o o -]

S1

AP S

P PORruN
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and
SWw=1/28 (B +Bomi/a2al Sp
e o o p o

(4~2)

Using equations (4~1) and (4-2) and applying the
principle of minimum potential energy and solving for

the stress yields (with & = & )3

e CR
2 4 2
E(Is +C)m?r/a) +6JmMsa) +C B
z w . o
8 =
CR e »
(m7/a) 1 B + B
P o o
(4-3)
Lets
2 4 2
E(I s +C)mi‘sa) + B8JmTTr7a) =+ ©
z w
E = (4-4)
cL 2
tmT™7a) 1
P
Using (4-4) in equation (4~3) and solving for B
o
yields:
»
B
o
B = (4-5)
o
% /% -1
CL CR

Comparison of equation (4-3) with equation (2-1)

S2
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reveals the only difference is that equation (4-3) has

an additional term in the numerator (specifically the

_ apring constant C).

#I - Since it is very difficult to quantify the spring
constant C and (hopefully) since its value is small in

comparison to other terms in expression (4~3), C will

E: be set to zero value and ignored for the remainder of

E this analysis.

r Thus for the case of C = @, equation (4-3) reduces

+ to equation (2-2).

4.4 Determination of the First Yield Load.

The determination of first yield load for the
generalized case proceeds in a similar fashion as for
the case of Model 1.

Again the totai torque consists of two parts
(reference 1), St. Venant's torque and a warping
torque. However, in this case the warping torque is
(reference 2)13

T =-EI dw

w z XXX

and

w = dB
b x

resulting ins
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2
T = <-EI dB
w z XXX

Thus the total torque is:
2
T=6GJB -EI dB

X 2 XXX

Choosing B and T:

B =B sinimx/a)
o

T=T cos{mi x/a)
o

Leaves:
2 2

T = (7/a)I6I + EI1 d (F7a) 1 B (4-6)
(=] 2 (=]

Using equation (4-5) to eliminate B leaves:
o
*

B

2 2 o

T = (P/a)lBJ + EI1 d ¢ Tra) 3
o Yy 4

(8 /% - 1)
CL CR
(4-7)
Again sectional considerations can be used to
evaluate ¢the maximum stress. The maximum stress
developed in the stiffener due to the torque is now:
2
(% ) = ~Ed B
x MAXT X
Application of the above definition of B and a

choice of x such that (& ) is a maxinum leaves:
%X MAXT

2 2

(%) = Ed ¢(7/a) B
x MAXT o
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Using equation (4-6) to eliminate B :
o
2
Ed T (7 /a)
o
(%) = (4-8)
X MRXT 2 __ 2
(G + EI d (/7 /a) 1
z

Using equation (4-7) in equation (4-8) leads to:
»
B
2 —~ 2 o
(% ) = Ed (Il /a) (4-9)
x MAXT

(8« /8 - 1)
CL CR

Again, from sectional considerations, the total

maximum stress can be described by:

§ = (%) + ¥ (4-10)
y x MAXT CR ’
Using equation (4-9) in equation (4-10), solving for
e
| and dividing by & to place into nondimensional
CR Yy
form yields:
2 2
L 4 Ed (TF/a) B %
CR cL o CR cL
———] = ]l ¥ e—— 4 +| ===
] 8 3 -4
y b4 b 4 Yy Yy

(4-11)
Choosing the smallest root and simplifying the
equation by the use of the reduced slenderness ratio

(equation 2-135) but redefining parameter A as:

S5

. e B & a -— - e m e 4 o oo




2 2=

(7"/a) Ed B
o
A= (4-12)
4
b4
Results in (equation 2-17):
2 2 2 2
8 (1 +1/L +A) - (1 + 1/L + A - 4/0
CR
=
g 2
y
(4—-13)
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S. COMPARISONS WITH OTHER STUDIES.

S.1 Comparison between Thin Plate and Beam Theory

Results

In chapter 3, the critical buckling stress of a
flat bar stiffener was derived through the use of thin
plate theory:

2 2 2

D di(m7~7a) CLd (m7™/a) + 6(1~-V)1/3 + C B
[ =]

CR 2 *
(m7/7a) 1 B +B
p o o
(3-3)

In chapter 4, the critical buckling stress of a
flat bar stiffener was found using one dimensional beam
theory:s

2 4 2

E(Is +C)(m7-/a) + BIJ(miT/a) + C B
z w °

CR 2 »
(m 7 /a) I B +B

(4-3)
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It should be noted here that when:

2 2 2
D dim77a) Ld m77a) + 6(1-V)1/3 =
w

2 4 2
E(Is +C)HhHimm/a) + GI(mi/a)
z w
the agreement between the two methods would be exact.

For the elastic range of experimentation and with:

3
Et
w
D = e G = E/2(1+ V) = E/2.6
w
12(1-Y)
3 3
I = (d t )r12 J=(dt )/3
z wWw wWw
d =d Y= 0.3

The above relationship reduces to:

2 2 2 2
d (m/7a) 1 d (mFF/a) 1
w w
+ - ? ——————— § -
=
10.92 2.6 12 7.8
(Thin Plate Theory) (Bsam Theory)

From a cursory examination it would appear that the
Thin Plate Theory results (equation 3-3) will probably
give a larger value for the buckling stress for the
normal range of stiffener dimensions used in ships. To

test this hypothesis, the dimensions of a flat bar

S8
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stiffener used in experiment #21 of reference (6) will
be used.

where:

d = 87.4 cm
w

a = 730 cm

m=1

For the thin plate theory:

2 2
d (mmM/a) 1
w
+ -—— = @.398
10.92 2.6

For the beam theory:

2 2

d (m77a) 1

w

——— + —— = Q.14
12 7.8

Thus, within the elastic range, the thin plate
theory results would indeed provide higher buckling
stress. The beam thoery results may thus be too
conservative. However, section 3.3 shows good agreament
betwaen equation (4-11) (first yield load) and

experimental yield results.
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Reference (3) performed a similar analysis to that
performed in this thesis but without the inclusion of
initial geometric imperfections.

For the case of a Tee stiffener subjected to an
axial load, equation 21 of reference (3) allows (in the
notation of this thesis):

2 2 2

GJ + E(I 8 +C )Ymiv/a) + C(asm 1)
z w

CR

Equation (2-2) of this thesis, for a Tee stiffener
in an analysis which ignores the contribution of the
web and includes the contributions of initial defects,
iss

2 2

(ECI s + C)(m7/a) + GJ} B
z w =]

CR *
1 B +B
P ] o
Thus equation (2-2), for the case of an initially
perfect Tee stiffener reduces to equation 21 of

referance (3) when tha rotational restraint is held to
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be zero. However, it must be noted that since the
physical models of the two derivations were slightly
different - namely that the model used in this analysis
consisted of two unequal flanges - some of the
parameters of the equations will have different values

(ie. I ; J ete.).
z
For the case of a flat bar stiffener, equation 22

of reference (3) has:

22 2
Ddtim#/a) d + 6(1-Y)1 Ctas/m i)
1)

CR
31 I

p P
From chapter 4, equation (4-3):

2 . 4 e
E(I s +C)mi/a) + BJmi™/a) + C B
z w o

CR 2 *
I (m7/a) B +B
p o o
The following is a comparison for a Tee stiffener
and a flat bar stiffener which was presented in
reference (3). Figure (5-1) from reference (3) shows
the geometric dimensions of the Tee and flat bar
stiffeners. Table (S5-1) shows how equations 21 and 22
of reference (3) and equations (2-2) and (4-3) of this

thesis compare with a finite element analysis performed
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D

using a computer program developed and documented

- - ———

the University of California (reference 12).

4
Flat Bar (8 /E) x 10 C=0
CR
FEM EGN(22) EQGN (4-3)
m= ] 6. 44 6. 42 6.28
ms2 7.58 7.31 7.03
4
Tee (&« /E) x 10 C=20
CR
FEM EQN(21) EQN(2-2)
m=1 26. 4 26.3 30.69
m=2 63.9 72.6 89. 4

Table (S-1) Comparison with Published Formulae
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Comparative Solutions
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The U.S. Navy has in the past wused similar
formula as those presented here for the determination
of critical buckling stresses. For the ecritical
buckling stress of a Tee stiffener, in the notation of

this thesis from reference 13 we have:

2
6J + (m7/a) EC
w
& =
CR
I
P
where here:
32 33
C =fd¢t /12+dt¢t
W w f w
3 2 3
1 =dt /3 +dft +Ff¢
P w ww wf

This is very similar to those results determined by
reference (3), with the exception that the above
formula does not account for the rotational restraint

provided by the junction of the web and plate. ARAlso I

o]
is much gsimplified here and C, the torsion—bending
w 2
constant, equates to the quantity (I s + C) of
2 w

reference (3) — but also somewhat simplified.
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Reference (6) provides insight into the torsional
buckling process through the experimental results
published there. This report describes model tests on
the collapse and post failure strength of Tee struts
simulating flat bar stiffeners in a stiffened plate.
The T struts were subjected to an axial load up to and
bayond failure. The geometrical imperfections of the
models were also recorded. The researchers of reference
(6) (of Det norske Veritas) are to be lauded for the
thoroughness and completeness of their report,
particularly in the treatment of the experimental data.

Table (5-2) contains the model data pertaining to
this analysis for ten experiments of reference (8).
Figures (5-2 to 5-11) show the load- deflection curves
for these ten experiments. The solid line represents
the experimental data. Point R of each of these graphs
represents the first yield load point as determined by
equation (4-11).

Notice that there is very good correlation between
the experimental first yield load point and the results

of equation (4-11).
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Model a h t B* % -4 g

w (-] y CR u
21 703 | 87.4 | 4.0 1. 67E-02 256 233 230
; 22 783 | 87.3 | 4.0 5. 6E-03 271 263 246
i. 23 703 | 87.7 4,9 1. 1SE-02 273 257 234
24 703 | 87.7 | 4.0 6. 0E-03 271 262 240
&: 25 763 | 87.7 -4.0 8. 0e-03 272 260 230
' 26 703 | 87.7 | 4.0 8.0E-23 256 244 243
27 703 | 87.4 | 4.0 6.0E-23 266 257 a72
28 703 | 88.0 | 4.0 | 7.99E-03 256 244 241
29 783 | 87.8 | 4.8 | 4.96E-Q3 259 252 218
30 703 | 88.1 4.0 1. 26E-02 271 253 230

Notation:
. a - length of model (cm) .
h - height of stiffener (cm)

t = thickness of stiffener (cm)
w

»*
B -~ angle of rotation (radians)

)
2
& - yield stress (N/mm )
y
[ 2
2 . g -~ first yield load stress (N/mm )
: . CR
2
€ - ultimate stress (experimental results) (N/mm )
u
.. Table (5-2) Data of Model Tests

66




i M T =

i
3]

n

v

D}

\J

el

LSO

L70

.40

. 19

.8a

.60

.30

AN

T T e Y > - — .

l

——mene—— EXPERIMENT

1

Ae
/ -1
[ N
f
00 0,70 1.40 2.10 2.80 3.50 4.28 4,909 S.eV 8.1¢ 7.
STROKE (M) t

MODEL 20

Figure (5-2)

Model Test #21 of Reference (6)

67

(7]
L1713

- —



won

n

Ur g M T =4 3

- -
ST «zZ=v 2
o - [

.

0.0
V.09 2.79 1.49 2.10 2.80 2J.85) 4,20 4.99 S.év

w2

B
. Te
.49
.19

.B@

-5
.90
.69

i )

Figure (5-3)

N T T ———p—yp

]

m—— EXPERLMENT

T

T >

_’___——JF”'r -

/ ~~

] T=F

A e b v

STROVE(MM)
MODEL 22

68

e Ao B W s e e A a

w 7.
[ )

Model Test #22 of Reference (6)

P -

-—




E L e . -
BT .

F l P 1
.7y o .

1 Ae ——— EXPERTMENT ’

1 2.40

i \ i
=

&

i

N—__-_“
o3
[\ PN\
Yo Q.70 1.40 2,10 2.80 .50 4.20 4,99 5.6V $.39 7.8
STRURE(MM) P
MODEL 2)
Figure (5-4) Model Test #23 of Reference (6)
69

bt

N




€ o2
3.9 — I T T I

- 1]
- s EXPERTMENT i
G.c“ (=

|3
.
&
o
- ——-

L2 i YV‘_‘F
WM T -4
n
.
L od
>
A |
i
»
2 a 4

1
L]
|
vy

1.50

i 1.29 { . «

n o.99 / Ny

.3 /
0. 00

- L

GO0 0.70 1.40 2.10 2.80 3.50 4.20 4.9 5.68 6.3 ?.0e :

' STROKE (1M & o .

MODEL 24 »

{

) - !
Figure (5-3) Model Test #24 of Refarence (6) -

1

B

) :

70



]
)
<
© 4
€ o2 .
3.00 IR
T T T "
. . ——e EXPERIMENT
. 2.7 A1 -
L.: ;
3 2.40 ;.__ |
; . ' — ]
>
7 2.10 )
p /
€ 1.9 /
" 1.50 \ . ]
; /R ‘
no1.20 :
‘ [
(] -
[
0.90 — |
\ ]
0.60 o~ - 4
/ Ng : 4
0.30
X
V.00
T000 3,70 1.4 2.10 2.80 3.50 4.20 4.90 S5.69 8.3 7.6v
STPOKE (™M) bw -
MODEL 28
: Figure (5-6) Model Test #25 of Reference (6) ) '1‘
. |
1
]
-
|
) -y
71 :
-
Yoo — o — . . e




..... e e .= e m = wm s W m v wITwWYTTW —r - ———r——r ~ . - -

| |

—— EXPC R M ENT

W M

e &

'
—~

2.7¢

- TR
: el | | |

~ VAL |
- [ 11 .

- Q
::oJe \\\»

o3¢

S u

00 0.70 L.40 2,19 2.80 I.50 4.20 4.9 S.6v0 <.
STROVE (11)

-y — -

™3
H

MODEL 28

Figure (5-7) Model Test #26 of Referance (6)

72

1
L
- 4
]
-
- -

. |
444441 _‘_._.444_“1

—
R
. .
T
1
—
Il

'I

I

|

N

T

i

|

1

-
4
-~




LR el ]

—~————— T T —————

T

L

[
" Y
’4
o
r
. € 9 _
L) -
r . I T I T - 4
; 2.7 —— CXPERIMENT -
A .
.40 '
: i :
s
7 2-10
: AR
€
5 1.8 / -
n 1.50 J
n
" 1.20 -
. .
¢}
M 9.9 / \ \
—
T
>.60 / D
(L 1]
Q.0
VA 0. 1.40 2.10 2.80 3.50 4.206 4.9 S.60 8.3V 7.0w
STROKE (MM) t wo
MODEL 27
Figure (5-8) Model Test #27 of Reference (6) "]
]
9
]
]
. L 1
73 1
1
1




&t 62

3.00 - . '
—— EXPERIMENT

.M

mEM By
\]\
/."

TN )

1 Q.90 -3

0.80 [~

I, BN
7/

N\
Q.00 2.70 $.40 2.10 2.80 3,50 4.20 4.90 5.0 6.39 7.09
STRONE (M) L by
MODEL 128
b Figure (S-9) Model Test #28 of Reference (6)

o fj

74

>




'«'u v f."Av"v T

VANMIT -

T3

¢.3

c.00

b

A®

EXPERIMENT

I i |

1

/

XS""-

.00 o.M 1.40 2.310 2.20 3.50 4.29 4,90 S.60 .30 7.0

MODEL 29

Figure (35-10)

STROKE (1M} € v

Model Test #29 of Reference (8)

.

—t




w "

¢~
on

e. T

2.9

2.19

1.89

1.5¢

1.29

9.99

0.60

0.0

[\ )

o.

rm— EXPER 1M ENT

11

/

i

MW Q.70 1.490 2.10 2.8 3I.50 4.20 4.99 5.68 6. .ue

MOOEL 30

Figure (35-11)

STROKE (M) L

Model Test #30 of Reference (6)

76

s

——ad ;;.‘,., i

-y

.




i;

e -l..».u.~l;'... L B ."M‘A:-—‘-m. Tentmnho st L s ~'.A o .~ 2. .

T v — a -y P Rpp—
- " v g ——— RSN A S . S B aes dec e men oo ol

6. CONCLUSIONS

This thesis utilized a design approach to tackle
the problem of torsional buckling of stiffeners with a
good deal of success. Integrated into all phases of
this analysis was a congideration of the geometric
imperfections of the stiffener -~ both Tee and flat bar.
These structural members were analyzed as simplified
sections and the Perry-Robertson approach used in other
areas of engineering was successfully applied here.

Chapter S showed that the derived results of this
thesis reduced to currently published formulae for the
case of the perfect stiffener. The contribution of this
thesis is that the initial imperfections were taken
into consideration, using a simple design approach, in
thQAerivation of the results presented here.

Also shown in chapter S was a generally good
correlation between results of this thesis and axial
load tests on flat bar stiffeners. Comparison of the
Tee stiffener formula with experimental data, which
measures and reports initial imperfections, needs to be
parformad. Also, comparisons should be made with other
tests on flat bar stiffeners in more dimensional ranges
to determine the range of validity for the results

derived here.
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Further work needs to be done in this area.
Specifically, determination of the critical buckling
stress and first yield load due to lateral 1loadings.
Also, a simplified method of handling the mode
interactions of combined lateral and axial loadings is
needed. In addition, it is an asset to understand from
the work reported in references (6) and (15) that the
falling path of the load-deflection curve (figure 6-1)
is represented by the tripping mechanism which is not

covered in this analysis.
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